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Abstract We study the steady state of the Abelian sandpile models with stochastic toppling
rules. The particle addition operators commute with each other, but in general these opera-
tors need not be diagonalizable. We use their Abelian algebra to determine their eigenvalues,
and the Jordan block structure. These are then used to determine the probability of different
configurations in the steady state. We illustrate this procedure by explicitly determining the
numerically exact steady state for a one dimensional example, for systems of size ≤ 12, and
also study the density profile in the steady state.

Keywords Self-organized criticality · Stochastic sandpile model

1 Introduction

Sandpile models with stochastic toppling rules are important subclass of sandpile mod-
els [1]. The first such model was studied by Manna [2], and these are usually known as
Manna models in the literature. They are able to describe the avalanche behavior seen ex-
perimentally in the piles of granular media much better than the deterministic models [3].
Also, in numerical studies, one gets better scaling collapse, and consequently, more reliable
estimates for the values of the critical exponents, than for models with deterministic toppling
rules [4].

Unfortunately, at present, the theoretical understanding of models with stochastic top-
pling rules is much less than that of their deterministic counterparts, e.g. the Bak-Tang-
Wiesenfeld (BTW) model [5, 6]. For example, there is no analogue of the burning test to
distinguish the transient and the recurrent states of a general Manna model. For the deter-
ministic case, it is known that all the recurrent configurations occur with equal probability
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in the steady state. A similar characterization of the steady state is not known in the Manna
case. The steady state has been explicitly determined only for the fully directed stochas-
tic models [7–10]. In some cases, one can formally characterize the recurrent states of the
model, e.g. the 1-dimensional Oslo rice pile model, but a straightforward direct depth-first
calculation of the exact probabilities of different configurations in the steady state takes
O(exp (L3)) steps where L is the system length [11]. While the exact values of the critical
exponents have been conjectured for (1 + 1) dimensional directed Manna model [9, 10], the
prototypical undirected Manna model in one dimension has resisted an exact solution so far
[12–14]. In higher dimensions, most of the studies are only numerical.

The conditions under which different scaling behaviors are seen in stochastic models is
a long debated issue. Initial studies suggested that the stochastic sandpile model and the
BTW model exhibit similar scaling behavior [15–17]. However later large scale simulations
showed that the stochastic sandpile models constitute a universality class different from
their deterministic counterparts: the critical exponents, scaling functions and geometrical
features are different for the two classes of models [18–23]. Further evidence came from
the qualitative differences in their avalanche distribution e.g. BTW model has multi fractal
nature, whereas Manna model exhibits simple finite size scaling [12, 22, 23]. Also the di-
rected version of the above models exhibit different scaling behavior than their undirected
counterparts [24]. Numerical results suggest that both the Abelian and Non-Abelian Manna
model constitute a universality class [25] different from Directed-Percolation (DP) [26, 27].
However, the corresponding fixed points are unstable with respect to introduction of pertur-
bation (“stickiness”) and with stickiness the critical behavior flows to the DP universality
class [28–30]. While there is a controversy about the generic DP behavior of undirected
stochastic sandpile models; for the directed case, the numerical evidence for asymptotic DP
behavior is fairly convincing.

While the original Manna model did not have the Abelian property of the BTW model,
one can construct stochastic toppling rules with Abelian property [31]. In this paper, we
discuss this Abelian version of the stochastic Manna model. It is a special case of the more
general Abelian Distributed Processors Model (ADP) [1]. We shall use the terms Determin-
istic Abelian Sandpile Models (DASM) and Stochastic Abelian Sandpile Models (SASM),
if we need to distinguish between these two classes of models. In DASM the relaxation
rules satisfy pair wise balance [32], which makes the model analytically tractable and the
recurrent configurations become equally probable in the steady state. However the stochastic
models do not have this property, and even the steady state can not be determined easily.

We use the algebra of the addition operators to determine the steady state of the model.
This algebraic approach provides a computationally efficient method to determine the
Markov evolution matrix of the model. The addition operators of SASM are not neces-
sarily diagonalizable even if we restrict ourselves to the space of recurrent configurations.
Using the Abelian algebra we determine a generalized eigenvector basis in which the opera-
tors reduce to Jordan block form. We also define a transformation matrix between this basis
and the configuration basis, and express the steady state in the latter basis. This procedure
is illustrated by explicitly working out the case of a one dimensional Manna model. In this
special case, we can show that each Jordan block is at most of dimension 2. We determine
the numerically exact steady state of the model for systems of size up to 12 and determine
the asymptotic density profile by extrapolating the results.

This paper is organized as follows: In Sect. 2, we define the model precisely. In Sect. 3,
we define the addition operators for the model, and discuss their algebra. Calculation of the
eigenvalues and the Jordan block structure of the addition operators are given in Sect. 4. The
transformation matrix between the generalized eigenvector basis and the configuration basis
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is determined in Sect. 5, and is used to determine the steady state vector in the configuration
basis in Sect. 6. The exact numerical determination of the steady state is discussed in Sect. 7
with some concluding remarks in Sect. 8.

2 The Model

We define a generalized Manna model on a graph of N sites with a non-negative integer
height variable zi defined at each site i. Let the threshold height at i be zc

i , and the site
is unstable if zi ≥ zc

i . If the system is stable, a sand grain is added at a randomly chosen
site which increases the height by 1. For each site i, there is a set of αmax

i lists Eα,i with
α = 1,2, . . . , αmax

i . If a site is unstable, it relaxes by the following toppling rule: we decrease
its height by zc

i . Then, with probability pα,i , we select the list Eα,i , independent of any
previous selections, and then add one grain to each site in that list. If a site occurs more than
once in the list, we add that many grains to that site.

Toppling at a site can make other sites unstable and they topple in their turn, until all the
lattice sites are stable. It follows from the Abelian property of the model that the probabil-
ities of different final stable configurations are independent of the order in which different
unstable sites are toppled.

We illustrate these rules with some examples below.

Model A (The one dimensional Manna model) The graph is L sites on a line and zc
i = 2,

for all sites. On toppling each grain is transfered to its neighbors with equal probability.
Hence we have αmax

i = 3, for all i, with E1,i = {i − 1, i − 1}, E2,i = {i − 1, i + 1}, and
E3,i = {i + 1, i + 1} and p1,i = p3,i = 1/4 and p2,i = 1/2. Also grains can move out of the
system if toppling occurs at a boundary site.

Model B (The one dimensional dissipative Manna model) Same as Model A except that on
toppling a grain can move out of the system with probability ε. Then αmax

i = 6 and the lists
of neighbors E1 = {i − 1, i − 1}, E2 = {i − 1, i + 1}, E3 = {i + 1, i + 1}, E4 = {i − 1},
E5 = {i + 1} and E6 = Φ , where Φ is an empty set. The corresponding probabilities are
p1,i = p3,i = (1 − ε)2/4, p2,i = (1 − ε)2/2, p4,i = p5,i = ε(1 − ε)/2 and p6,i = ε2.

In this case, one can use periodic boundary conditions, as there is dissipation at all sites.
The steady state is critical only in the limit ε → 0. For the Models A and B, it is easy to
see that all stable configurations occur in the steady state with non-zero probability. We can
also define stochastic models where the recurrent configurations form only an exponentially
small fraction of all stable configurations. An example of this type is

Model C The graph is a square lattice with N sites and zc
i = 2. Under toppling, with equal

probability two particles are transfered to either horizontal or vertical neighbors. Hence
αmax

i = 2 with E1,i = {i + ex, i − ex} and E2,i = {i + ey, i − ey} with p1,i = p2,i = 1/2.

In the following we will mostly confine ourselves to Model A. The treatment of other
cases presents no special difficulties.

3 The Addition Operators and Their Algebra

Let us denote the space of stable states as Γ spanned by Ω = ∏N

i=1 zc
i basis vectors labeled

by C. We define P (C, t) as the probability of finding the system in the basis C at time t . To
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each set {P (C, t)}, we associate a vector |P (t)〉 belonging to the vector space Γ , and write

|P (t)〉 =
∑

C

P (C, t)|C〉. (1)

We define the particle addition operators ai for all i as linear operators acting on Γ as
follows: Consider adding a sand grain at site i in a configuration C, and relaxing the system
until a stable configuration is reached. For stochastic toppling rules, the resulting state is
not necessarily a basis vector corresponding to a unique stable configuration, but a linear
combination of them. If the resulting configuration is C ′ with probability Pi(C

′|C), we
define

ai |C〉 =
∑

C′
Pi(C

′|C)|C ′〉, (2)

for all C. Note that the action of any of these operators on a given configuration gives a
unique probability state vector.

Equation (2) is a formal definition of the operators {ai}. One can think of these as Ω ×
Ω matrices, but it is quite non-trivial to actually determine the matrix elements Pi(C

′|C)

explicitly from the toppling rules. This is because of the non-zero probability of an arbitrary
large number of toppling before a steady state is reached.

For an example, consider the avalanches in Model A for system of size L = 3. Consider
the 23 stable configurations as the basis vectors and denote them by their height values
|z1, z2, z3〉. The action of a2 on |0,1,0〉 will generate a unstable state |0,2,0〉. Using the
toppling rules we can write the following set of equations for three unstable states

|0,2,0〉 = 1

4
|2,0,0〉 + 1

2
|1,0,1〉 + 1

4
|0,0,2〉,

|2,0,0〉 = 1

4
|0,2,0〉 + 1

2
|0,1,0〉 + 1

4
|0,0,0〉,

|0,0,2〉 = 1

4
|0,2,0〉 + 1

2
|0,1,0〉 + 1

4
|0,0,0〉.

(3)

We see that there is a nonzero probability that the avalanche can continue for more than s

toppling, for any finite s. e.g. in the sequence |0,2,0〉 → |2,0,0〉 → |0,2,0〉 → · · · . Thus
straight forward application of the relaxation rules do not result in a finite procedure to
determine the unstable vector |0,2,0〉 in terms of the stable configurations. Instead, we
have to write (3) as a matrix equation

M

⎡

⎣
|0,2,0〉
|2,0,0〉
|0,0,2〉

⎤

⎦ =
⎡

⎣
|1,0,1〉
|0,1,0〉
|0,0,0〉

⎤

⎦ , (4)

and then invert it. More generally, the determination of P (C ′|C) involves working in a large
space of unstable configurations.

For example in Model A, there are 2L stable configurations, where each site has 0 or
1 particle. Total number of particles is at most L. On adding one particle, the number of
particles can become L + 1, where initially, only one site will have height 2. However, it is
easy to verify that by toppling one can generate configurations where the number of particles
at a site is much greater than 2. In fact, all the L+ 1 particles could be at the same site. Then
the total number of stable and unstable configurations Ω ′ is the number of ways one can
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distribute L + 1 particles on L sites . It is easily seen that Ω ′ varies as 4L, and one needs to
invert a matrix of size O(Ω ′ × Ω ′).

In this paper we will use the operator algebra to obtain an efficient method to determine
the probabilities P (C ′|C) explicitly which requires inverting a matrix only of size 2L × 2L.
It has been shown [31] that the addition operators for different sites commute i.e.

[ai ,aj ] = 0, for all i, j. (5)

Unlike the DASM, the inverse operators {a−1
i } for SASM need not exist, even if we restrict

ourselves to the set of recurrent configurations. This is because among the recurrent states,
one can have two different initial probability vectors that yield the same resultant vector.
This makes the determination of the matrix form of the operators difficult for this model.

Apart from the Abelian property, the operators also satisfy a set of algebraic equations.
For simplicity of presentation, now on we consider zc

i = zc and pα,i = pα for all sites. Then
consecutive addition of zc grains at a site ensures that the site will topple once and transfers
zc grains to its neighbors, irrespective of the initial height. Then the operators obey the
following equation

azc

i =
∑

α

pαaEα,i for 1 ≤ i ≤ N, (6)

where we have used the notation aE = ∏
xεE ax for any list E, and

ai = 1, (7)

for sites i outside the lattice. In particular for the examples in Sect. 2, these equations are as
follows

a2
i = 1

4
(ai−1 + ai+1)

2 for Model A, (8)

a2
i =

[
1 − ε

2
ai−1 + 1 − ε

2
ai+1 + ε1

]2

for Model B, and (9)

a2
i = 1

2
(ai−ex ai+ex + ai−ey ai+ey ) for Model C. (10)

4 Jordan Block Structure of the Addition Operators

In general the matrices {ai} need not be diagonalizable. However, using the Abelian prop-
erty, we can construct a common set of generalized eigenvectors for all the operators {ai}
such that in this basis the matrices simultaneously reduce to Jordan block form. These gen-
eralized eigenvectors split the vector space Γ into disjoint subspaces, each corresponding to
distinct set of eigenvalues. There will be at least one common eigenvector in each subspace,
for all the addition operators.

Proof Consider one of the operators, say a1. Let Γ1 be the subspace of Γ spanned by the
(right) generalized eigenvectors of a1 corresponding to the eigenvalue a1. There is at least
one such generalized eigenvector, so Γ1 is non-null. We pick one of the other addition op-
erators, say a2. From the fact that a2 commutes with a1, it immediately follows that a2

acting on any vector in the subspace Γ1 leaves it within the same subspace. Diagonalizing
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a2 within this subspace, we construct a possibly smaller but still non-null subspace Γ2 which
is spanned by simultaneous eigenvectors of a1 and a2 with eigenvalues a1 and a2. Repeating
this argument with the other operators, one can construct vectors which are simultaneous
eigenvectors of all the {ai}. �

Let |ψ〉 be such an eigenvector, with

ai |ψ〉 = ai |ψ〉, for 1 ≤ i ≤ N. (11)

Then from (6) the eigenvalues satisfy the following set of equations

a
zc

i =
∑

α

pαa
Eα,i for 1 ≤ i ≤ N, (12)

where we have used the notation aE = ∏
xεE ax , for any list E.

Rather than work with this general case, we will consider the special case in Model A
for simplicity. No extra complications occur in the more general case. Then, from (8), the
corresponding eigenvalue equation is

a2
i = 1

4
(ai−1 + ai+1)

2, for 1 ≤ i ≤ L. (13)

These are L coupled quadratic equations in L complex variables {ai}. We can reduce them
to L linear equations by taking square root

ηiai = 1

2
(ai−1 + ai+1), (14)

where ηi = ±1. The (7) sets the values for the eigenvalues of a0 and aL+1 which are

a0 = aL+1 = 1. (15)

There are 2L different choices for the set of L different η’s and for each such choice, we
get a set of eigenvalues {ai}. In general, there will be degenerate sets of eigenvalues and the
degeneracy arises if one of the ai is zero. Using the triangular inequality it is easy to show
that

2|ai | ≤ |ai−1| + |ai+1|, (16)

i.e. |ai | are convex functions of discrete variables i. Then, given the boundary condition in
(15), there could at most be one ai = 0 in the solution for a given {ηi}, which means that
each eigenvalue set can be at most doubly degenerate.

Finding the number of degeneracies of solutions is interesting but difficult in general. We
show that for L = 3 (mod 4) the number of such degenerate sets of eigenvalues ≥ 2(L+1)/2.

Proof Consider the system of length L = 4m + 3, with m being a non negative integer. For
any given set {ηi}, i = 1 to 2m + 2, it is possible to construct a solution {bi} of (14) with
i ≤ 2m + 2 which satisfies b0 = 1 and b2m+2 = 0. Clearly, from (14), if we have the solution
{ai} corresponding to a particular set {ηj }, one can construct the solution {a′

i} corresponding
to {η′

j = −ηj } using a′
j = (−1)j aj . Using this symmetry we extend {bi} (i = 1 to (L+1)/2)

to form a set {ai} for i = 1 to L as follows:
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Fig. 1 The filled circles denote a
dependence of the eigenvalues ai

on i for L = 11 with a6 = 0. The
unfilled circles show the results
obtained by reflection of ai , with
i ≤ 6, around the central site. The
eigenvalues on the right-half of
the lattice are obtained by
multiplying (−1)i to the values
of the unfilled circles

Table 1 Degeneracies arise if one of the ai is zero in a solution of (14). In the table, g denotes the total
number of solutions with one of the ai = 0 i.e. the total number of degenerate sets of solution. Ni is the
number of solutions with the eigenvalue ai = 0. Values for the other half of the system can be obtained using
symmetry

L g N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

3 4 0 4

7 40 0 0 8 24

11 136 0 0 0 8 0 120

15 1304 0 0 0 4 32 48 288 560

19 3024 0 0 0 0 0 8 0 288 0 2432

ai = bi for i ≤ 2m + 2, (17)

= (−1)ibL+1−i for i > 2m + 2. (18)

This is a solution of (14) for the set {η′
i} with

η′
i = ηi for i ≤ 2m + 2, (19)

= −ηL+1−i for i > 2m + 2. (20)

and this solution {ai} satisfies the boundary conditions a0 = 1, aL+1 = 1, and a2m+2 = 0
(Fig. 1). There are 22m+2 such solutions possible corresponding to all possible sets of {η′

i},
and this gives the lower bound for the number of degenerate solutions. �

A direct numerical calculation for L ≤ 20 shows that if L �= 3 (mod 4), all 2L sets of
eigenvalues are distinct. We present the degeneracies of the solutions in Table 1. Calculation
for simple choices of η shows that the degeneracies are possible only if L = 3 (mod 4).

For example, consider ηi = −1 for i = L and for the rest of the sites it is 1. Then ai

is of the form ai = 1 − αi, for all i. If we want this to be zero for i = k, we must have
α = 1/k. Then, requiring that (14) be satisfied at i = L, gives 3L = 4k + 1, i.e. L = 3 (mod
4). Similarly for the set with ηL−1 = −1 and 1 for rest of the sites imposes a condition on
length 3L = 8k + 1, which is also a subset of L = 3 (mod 4). Finding a general proof that
degeneracies occur only if L = 3 (mod 4) remain an open problem.
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For each degenerate subspace there is a generalized eigenvector linearly independent of
the eigenvector corresponding to the eigenvalue of the subspace. In general, let us denote
them by |{ai};n〉, where n = 1 for the eigenvector and n = 2 for the generalized eigenvector.
For non-degenerate subspace n can only be 1. The vectors satisfy the following equations

ai |{aj };1〉 = ai |{aj };1〉,
ai |{aj };2〉 = ai |{aj };2〉 + αi |{aj };1〉, (21)

where α’s are complex numbers. Then using (14) it can be shown easily that α’s satisfy the
following equation

ηiαi = 1

2
(αi−1 + αi+1). (22)

This is similar to (14), except the boundary conditions which are

α0 = αL+1 = 0. (23)

For a given set of {ηi}, these are L simultaneous set of homogeneous linear equations which
has infinitely many possible solutions. In order to get a single solution we choose αi = 1 if
ai = 0, without loss of generality. This corresponds to choosing a particular normalization
of the rank 2 eigenvectors. The solution of both the equations (14) and (22) can be easily ob-
tained numerically. The generalized eigenvectors and the Jordan block form of the addition
operators for the system of size L = 3 are given in the Appendix.

5 Matrix Representation in the Configuration Basis

Given the well-defined action of the addition operators on the generalized eigenvectors it
is possible to define a transformation matrix M between the configuration basis and the
generalized eigenvector basis.

|{zi}〉 =
∑

j

M{zi },j |ψj 〉, (24)

where |{zi}〉 is the basis vector of Γ corresponding to the height configuration {zi} and
|ψj 〉 is the j th generalized eigenvector. Let us express the configuration |{0}〉, with all sites
empty, as a linear combination of all the generalized eigenvectors.

|{0}〉 =
∑

j

cj |ψj 〉, (25)

where cj s are constants. Then all the stable configurations can be obtained by adding grains
at properly chosen sites in |{0}〉.

|{zi}〉 =
∏

i

azi

i |{0}〉 =
∑

j

cj

∏

i

azi

i |ψj 〉, (26)

and hence

M{zi },j =
〈

{zi}
∣
∣
∣
∣

∏

i

azi

i

∣
∣
∣
∣ψj

〉

. (27)
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The action of the addition operators on the generalized eigenvectors, for example (21)
for Model A, would generate the elements of the matrix M. Given M, we can get the eigen-
vectors of ai , in the configuration basis, in particular, the steady state vector, by the inverse
transformation

|ψj 〉 = M−1|{zi}〉. (28)

The addition operators in the configuration basis are obtained using the similarity trans-
formation MaJ

i M−1. An explicit form of M for Model A of length L = 3 is given in the
Appendix.

6 Determination of the Steady State Vector

The time-evolution of the system is Markovian and the evolution operator W is defined by
the master equation

|P (t + 1)〉 = W|P (t)〉, (29)

where |P (t)〉 and |P (t + 1)〉 are the state of the system at time t and t + 1, respectively. We
can write the time-evolution operator in terms of the addition operators as

W = 1

L

∑

i

ai . (30)

Then the common eigenvector of all the addition operators corresponding to eigenvalue 1
is the steady state vector of the system. The steady state vector can be determined in the
stable configuration basis using the matrix M−1. For Model A of length L = 3 the steady
state vector is

|S〉 = 13

392
|0,0,0〉 + 1

16
|1,0,0〉 + 47

392
|0,1,0〉 + 3

16
|1,1,0〉

+ 1

16
|0,0,1〉 + 13

98
|1,0,1〉 + 3

16
|0,1,1〉 + 3

14
|1,1,1〉, (31)

where the stable configurations are denoted by |z1, z2, z3〉 with zi as the height of the ith site.
The amplitude of each term in the expansion is the probability of finding the corresponding
height configuration in the steady state.

7 Numerical Results

Here we numerically calculate the exact steady state of Model A for different system length
and discuss its properties. As shown in (14) and (22) the eigenvalues {ai} and the off-
diagonal matrix elements {αi} form sets of linear equations for a given set of {ηi}. We solve
them by LU decomposition method. Because of the tridiagonal structure of the equations,
only O(2L) number of steps are required to get the solution. The maximum number of steps
(O(23L)) are required for the inversion of the transformation matrix M. We have used the
Gauss-Jordan elimination method for the inversion. It is important to note that, the maximum
system length L, possible to treat by this method, is determined by the limited memory size
of the computers, and not by the computation time. Using desktop computers we were able
to determine M exactly for systems of size L ≤ 12.
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Fig. 2 The ratio of the
probability of the most probable
configuration Cmax (all
occupied) and the least probable
configuration Cmin (all sites
empty) plotted as a function of
the system length L. The fitting
function
f (x) = a − bL + cL logL, with
a = 1.50, b = 0.80 and c = 0.94

We note that as L is increased, the second largest eigenvalue of W tends to 1/2. Thus,
the gap between the largest and the next largest eigenvalue of the relaxation matrix does not
tend to zero. This gap measures the relaxation time of the system in terms of the macro-time
unit of interval between addition of grains. However, the average duration of an avalanche
measured in terms of micro-time unit of duration of a single toppling event does diverge, as
system size increases.

An interesting question is the extent of variation between probabilities of different con-
figurations in the steady state. In the one-dimensional Oslo model, for a system of L sites,
the ratio of probabilities of the most probable to the least probable configuration varies as
exp(L3)[11]. However in Model A, we find that the ratio is not quit as large, and it only
varies approximately as exp(0.94L logL) (Fig. 2) for large L.

This suggests that possibly the exact steady state has a product measure. To check this we
define a product basis |ψ ′〉 = ∏

i |ψ ′
i 〉, where |ψ ′

i 〉 could be any one of the two orthogonal
vectors

|1′〉 = cosφi |1〉 + sinφi |0〉,
|0′〉 = sinφi |1〉 − cosφi |0〉, (32)

with φi a real number. Then in this basis the steady state can be written as

|S〉 =
∑

ψ ′
P (ψ ′)|ψ ′〉. (33)

We choose {φi} so that the ratio between the amplitudes of basis vectors with next-largest
and largest amplitudes becomes as small as possible (this would become zero, if the state
was a product measure state). In Fig. 3, we have plotted for system of size L = 12, the rel-
ative amplitudes in both configuration basis and the optimized product basis as a function
of the rank of the basis vectors with the vectors arranged in decreasing orders of their am-
plitudes. In the optimized basis the second highest probability is only 10 times smaller than
the highest probability. This implies that the steady state measure is not a product measure.

The steady state density for different sites are plotted in Fig. 4 for different system sizes.
Amongst the different fitting forms that we tried, the following functional form gives the
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Fig. 3 The amplitudes,
normalized with its largest value,
corresponding to the basis
vectors in the steady state plotted
as a function of the rank of the
basis vectors. The vectors are
arranged in decreasing orders of
their amplitudes. The plot is
given for the configuration basis
and the optimized basis for
Model A of size L = 12

Fig. 4 Average steady state
density ρL(i) at site i for
Model A of different length L

best fit

1

ρL(x)
= 1

ρ̄∞
+ b

[
1

(x + d)ν⊥
+ 1

(L + 1 − x + d)ν⊥

]

, (34)

where ρ̄∞, b, ν⊥ and d are real numbers. Using this functional form the steady state particle
density averaged over all sites for system of size L can be written as

1

ρ̄L

= 1

ρ̄∞
+ B

(L + δ)ν⊥
, (35)

where B is a real number and ρ̄∞ is the asymptotic value of the average particle density. The
exact value of ρ̄L and the particle density at the central site ρL(xm) are listed in the Table 2
for different system sizes. The sequential fitting method is used to find the values of ρ̄∞, B ,
ν⊥ and δ from these data. For a given choice of δ, these values are obtained numerically by
solving (35) for three consecutive lengths L−1, L and L+1. Best convergence of the values
of ρ̄∞, B and ν⊥ are obtained for δ = 1.1, which are tabulated in Table 3. The asymptotic
value of the average particle density converges to ρ̄∞ = 0.953 which is close to the more
precise estimate 0.94885(7), from Monte Carlo simulations [12].
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Table 2 The values of particle
density in the steady state for the
Model A of different length L.
Here ρ̄L denotes the steady state
particle density averaged over all
sites and ρL(xm) denotes the
steady state particle density at the
central site

L ρ̄L ρL(xm)

2 0.583333 0.583333

3 0.634354 0.709184

4 0.669262 0.737000

5 0.695210 0.769704

6 0.715472 0.786491

7 0.731879 0.805897

8 0.745514 0.816009

9 0.757080 0.827217

10 0.767051 0.834600

11 0.775760 0.842665

12 0.783451 0.848054

Table 3 The sequential fit of the
functional form in (35) to the
data for average particle density
for Model A of different length L

given in Table 2

L 1/ρ̄∞ B ν⊥

3 1.061 1.128 0.656

4 1.049 1.132 0.641

5 1.053 1.132 0.646

6 1.049 1.131 0.640

7 1.050 1.131 0.641

8 1.049 1.130 0.639

9 1.049 1.130 0.639

10 1.049 1.130 0.639

11 1.049 1.130 0.639

8 Concluding Remarks

For a general SASM with N sites, the calculation of eigenvalues involves solving N coupled
polynomial equations in N variables. This can be done in polynomial time in Ω , the number
of stable configurations of the model. These are then used to construct the transformation
matrix M of size Ω × Ω . Finally inverting the matrix M gives us the eigenvectors of the
evolution operator, in particular the steady state.

Of course, to determine the steady state of any Markov chain on Ω states, we need to
determine the eigenvectors of the evolution matrix of size Ω × Ω . The point here is that
the specification of the toppling rules does not directly specify the evolution matrix, and
determining the matrix elements of the latter from the toppling rules is computationally
very nontrivial. Using the Abelian property, we are able to tackle this problem.

For a generic model with some parameters, e.g. the Model B, except for special sym-
metries, one does not expect degeneracies in eigenvalues to occur for a generic value of the
parameters. For special values of the parameters, if there is a non-trivial Jordan block struc-
ture of the evolution operator, it would show up in the time-dependent correlation functions
of the model by the presence of terms of the type t exp(−λj t), in addition to the usual sum
of terms of the type exp(−λj t).

In particular we have explicitly calculated the steady state for a specific model (Model A
in Sect. 2) of length L ≤ 12. Extrapolating the results we determined the asymptotic density
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profile in the steady state. The power-law profile of deviations from the mean value near the
ends would be important for determining the avalanche exponents of the model [33]. This
remains an interesting open problem.

Acknowledgements The work of D.D. is supported in part by a J.C. Bose Fellowship of the Government
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Appendix

Here we give some details of the explicit calculation of the steady state, and the matrix
representation of addition operators for Model A of length L = 3.

The eight sets of eigenvalues obtained by solving (14) are (1,1,1), (−1,1,−1),
( 1

3 ,− 1
3 , 1

3 ), (− 1
3 ,− 1

3 ,− 1
3 ), ( 1

2 ,0,− 1
2 ), and (− 1

2 ,0, 1
2 ) with the last two sets repeated twice.

For writing the matrix structure of the addition operators, we choose the order of the
eigenvectors same as the order of the eigenvalues mentioned above. For the degenerate sub-
space we order the eigenvector |{ai};1〉, defined in (21), before the generalized eigenvector
|{ai};2〉. Then in this basis the matrices corresponding to the addition operators have the
following Jordan block form.

aJ
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 1
3 0 0 0 0 0

0 0 0 − 1
3 0 0 0 0

0 0 0 0 1
2

1
2 0 0

0 0 0 0 0 1
2 0 0

0 0 0 0 0 0 − 1
2 − 1

2

0 0 0 0 0 0 0 − 1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (36)

aJ
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 − 1
3 0 0 0 0 0

0 0 0 − 1
3 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (37)

aJ
3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 1
3 0 0 0 0 0

0 0 0 − 1
3 0 0 0 0

0 0 0 0 − 1
2 − 1

2 0 0

0 0 0 0 0 − 1
2 0 0

0 0 0 0 0 0 1
2

1
2

0 0 0 0 0 0 0 1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (38)
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The transformation matrix M, discussed in Sect. 5, between the generalized eigenvector
basis and the configuration basis has the following form

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1

1 −1 1/3 −1/3 1 1/2 −1 −1/2

1 1 −1/3 −1/3 1 0 1 0

1 −1 −1/9 1/9 1/2 0 −1/2 0

1 −1 1/3 −1/3 −1 −1/2 1 1/2

1 1 1/9 1/9 −3/4 −1/4 −3/4 −1/4

1 −1 −1/9 1/9 −1/2 0 1/2 0

1 1 −1/27 −1/27 −1/4 0 −1/4 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (39)

where the configuration basis vectors are chosen in the following order (0,0,0), (1,0,0),
(0,1,0), (1,1,0), (0,0,1), (1,0,1), (0,1,1), and (1,1,1). The matrix is non-singular, and
the inverse can be calculated numerically. Using the similarity transformation MaJ

1 M−1 we
find matrix representation of the addition operator a1 in the configuration basis.

a1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 2
7 0 4

49 0 0 0 0

1 0 0 0 0 1
24 0 1

9

0 4
7 0 22

49 0 0 0 0

0 0 1 0 0 1
12 0 19

72

0 0 0 0 0 7
24 0 1

9

0 1
7 0 16

49 1 0 0 0

0 0 0 0 0 7
12 0 37

72

0 0 0 1
7 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (40)

The other operators can also be determined similarly.
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